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Abstract
Whether a document is of historical or contemporary significance, typography plays a crucial role in
its composition. From the early days of modern printing, typographic techniques have evolved and
transformed, resulting in changes to the features of typography. By analyzing these features, we can gain
insights into specific time periods, geographical locations, and messages conveyed through typography.
Therefore, in this paper, we aim to investigate the feasibility of training a model to classify serif types
without knowledge of the font and character. We also investigate how to train a vectorial-based image
model able to group together fonts with similar features. Specifically, we compare the use of state-of-the-
art image classification methods, such as the EfficientNet-B2 and the Vision Transformer Base model
with different patch sizes, and the state-of-the-art fine-grained image classification method, TransFG, on
the serif classification task. We also evaluate the use of the DeepSVG model to learn to group fonts with
similar features. Our investigation reveals that fine-grained image classification methods are better suited
for the serif classification tasks and that leveraging the character labels helps to learn more meaningful
font similarities.
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I INTRODUCTION

Typography is everywhere, from street signs, advertising boards, product labels, and even the
text on our clothes carrying a piece of information, a message, a tone, and even an emotion.
The importance of typography has been recognized for centuries, and the history of typography
reflects the evolution of technology and design as described by Jury [2007] and Tselentis et al.
[2012]. Over time, typographic features have evolved according to technological advances
and cultural shifts. Studying typographic features can help us understand the cultural and
technological area it was designed for and the message it wishes to convey. Analyzing font
characteristics can also assist designers and typographers in comprehending the relationships
between typefaces and how they can be used together. Additionally, it can shed light on the
origins of fonts and how they influence each other. For example, in the 1950s, Max Miedinger
and Eduard Hoffmann were commissioned to create the most harmonious font they can. They
were inspired by one of the most widely used sans serif fonts of the time, Akzidenz-Grotesk,
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introduced by the Berthold foundry in 1898. They made a subtle interpretation of it making it
simpler and more readable. The result presented, originally called Neue Haas Grotesk, then
Helvetica, is a very legible and widely used font. This work of reinterpretation is strongly linked
to the arrival of new techniques (passage from molten metal to phototype, then to digitization)
which allow better control and greater freedom of the letter drawing. Nowadays, a new version
of Helvetica (Helvetica Now) has been designed for optimal readability on screens, especially at
a reduced size. The use of tools, ideally incorporated directly into the typographer’s software, to
emphasize these modifications can be helpful in recognizing resemblances and discrepancies.
The paper presented here concentrates on examining a specific aspect of typography, namely the
serif, and exploring the similarities among different fonts.

Font features range from but are not limited to, font weight, font width, font contrast, x-height,
serifs and sans, roman and italics (see Figure 1 and Figure 2). One of the most noticeable and
distinctive font features is the serif. Serifs are the short appendixes found at the end of the main
stems of some characters, as explained in Monotype [2020]. Intuitively, we expect to be able to
distinguish the different types of serifs to help non-experts tune into the details of typographical
elements and the various styles that exist. Furthermore, classifying a font based on its serif type
helps designers understand the context in which the font was created, as well as the role it plays
in effective and aesthetically pleasing communication. In this study, we, therefore, investigate
the use of different machine learning algorithms to automatically classify serif fonts. Specifically,
we evaluate both general and fine-grained image classification models. To provide a context,
reference, and to highlight the specific challenges linked with serif classification, we used the
same models to perform font classification, a well-known task from the literature.

The second feature we investigate in this study is font similarities. This characteristic serves
a multitude of purposes. Firstly, it allows us to identify connections between fonts that were
created during different time periods, yet adhere to the same principles. Additionally, it provides
insight into the evolution of typeface design over time, as well as its various applications in print
and screen contexts. Furthermore, it can assist designers in avoiding the use of font variants that
are overly similar when developing a collection of fonts for a poster or a book while allowing
for certain features that bind them together. In our context, font similarity is defined as the
capacity of an algorithm to find fonts that apply similar features (e.g., similar serif, similar width,
similar contrast). While finding similar fonts based on raster images and conditioned on both the
character and the font has been studied in the past (see section II), here, we follow a different
approach and develop a method based on Scalable Vector Graphics (SVG) data, as vector files are
the file format primarily used by typographers when creating a font. To this end, we propose and
evaluate an SVG-based Variational Auto-Encoder to measure font similarity. We also evaluate
the feasibility of learning similarity without knowing the character label (e.g., if it is a A, or a B).
In order to facilitate comparisons, we trained a convolutional variational autoencoder on raster
images and used the same evaluation methods.

To assess our algorithms (serif and similarities), we created an annotated dataset detailed in the
method section and available as supplementary material. Our results indicate that fine-grained
recognition models provide the most effective framework for serif classification and that knowing
the character label helps in learning font similarities.

II RELATED WORK

In this section, we review the literature from three domains: algorithms for typographic analysis,
deep learning algorithms for image classification as they can be directly applied to the studied
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Figure 1: Font features examples: weight, baseline, contrast, structure, ... Font features are numerous, we
present here a non-exhaustive list to understand their varieties. More details can be found in The Geometry
of Type and Letter Fountain written by Coles [2016] and Pohlen [2011] respectively.

cases, and deep learning algorithms on SVG images.

2.1 Typographic Analysis

To the best of our knowledge, few attempts have been made to automatically analyze typographic
features. Existing methods use Variational Auto-Encoders (VAE) such as Kingma and Welling
[2014] to build a latent space representation of the font structure as in Srivatsan et al. [2019]. In
this case, the auto-encoder is conditioned on both the character and the font. Using this method,
it is possible to build a latent space that groups together characters from similar fonts. Other
existing methods, such as Adobe DeepFont Wang et al. [2015] or Javed et al. [2014], Zhu et al.
[2001], Ioffe and Szegedy [2015], Zramdini and Ingold [1998], Bataineh et al. [2012], Gao et al.
[2008], focus on font classification and font recognition rather than font feature analysis.

In addition, some methods have been proposed to extract font characteristics such as the text line
described by Murdock et al. [2015] and the baseline explained in Diem et al. [2017]. Another
method developed by Shinahara et al. [2019] attempted to build a feature representation of fonts
but focused on categories like “historical” and “fancy” rather than typographic features.

2.2 Deep Learning for Image Classification

This section describes standard image classification methods that have been used on the Im-
agenet benchmark from Russakovsky et al. [2015] and can be applied to our context. These
methods were selected as being the state-of-the-art algorithms at the start of the project. They
include EfficientNets from Tan and Le [2019] (and its variants as Xie et al. [2019]), and Vision
Transformers such as Dosovitskiy et al. [2020]. In addition, we describe methods to perform
fine-grained image classification, targeting the recognition of visually-similar categories, such
as different species of birds. Our choice of such methods was motivated by the fact that serif
features are small and difficult to distinguish.

EfficientNet described by Tan and Le [2019] uses a network architecture scaling method that
scales all the feature dimensions (depth/width/resolution) using a compound coefficient. Unlike
conventional practice, compound coefficient applies an arbitrary scaling. The model is based on
the inverted bottleneck and linear residual blocks of the MobilenetV2 from Sandler et al. [2019]
while adding squeeze and excitation layers.

The vision transformer explained in Dosovitskiy et al. [2020], also an image classification model,
is inspired by the Natural Language Processing domain state-of-the-art Transformer model from
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Figure 2: Examples of serifs and sans serifs types. In the context of the project, we grouped them into
three categories, triangular, linear and slab.

Vaswani et al. [2017]. It is applied to image patches. The model was the first example of a fully
transformer-based model applied to a vision task without any convolution layers. It achieved
state-of-the-art accuracy at the time it was published on the Imagenet dataset and still is very
competitively close to the current state-of-the-art.

The state-of-the-art in fine-grained image classification at the start of the project was the TransFG
model from He et al. [2021], which builds on top of the vision transformer from Dosovitskiy et al.
[2020] by employing a “parts selection module” to localize the regions with the most distinctive
features. It then uses a contrastive loss to improve the discrimination between regions. TransFG
and other fine-grained recognition models are interesting to consider for learning to localize
specific parts of the image that are most relevant to the classification task. This is specifically
interesting for typography-related tasks like classification of the serif type, as serifs are found in
specific positions on different characters and are quite small compared to the overall letter.

The above methods were proposed for general image recognition, or fine-grained recognition on
standard benchmarks, none of which depict typographic content. Here, we therefore evaluate
them for the task of serif recognition.

2.3 Deep Learning for SVG Images

Unlike raster images, deep learning on vector graphics is a domain that has not received extensive
attention. Using vectorial formats like SVG instead of the raster format is relevant for the
typography domain as they are commonly used by typographers and are practical for their
scalability. To measure the feasibility of integrating similar features within typographer’s
software, we focus the study here on the SVG format. Mostly focused on the generation of
vectorized sketches, the SketchRNN described by Ha and Eck [2017] used a Long Short-Term
Memory (LSTM) as in Hochreiter and Schmidhuber [1997] based VAE from Kingma and Welling
[2014]. Recently, the Sketchformer developed by Sampaio Ferraz Ribeiro et al. [2020] replaced
the LSTM-based model with a Transformer as in Vaswani et al. [2017] based architecture,
resulting in better graphic generation due the Transformer’s ability to better represent long
temporal dependencies. These methods worked with datasets of SVG icons from various themes,
focusing on the tasks of image reconstruction and latent space operations.

One of the first methods that could generate full vector graphics with straight lines and Bezier
curves was SVG-VAE from Lopes et al. [2019], which used a one-stage autoregressive approach
to generate path commands. By contrast, DeepSVG from Carlier et al. [2020] proposed a two-
stage hierarchical Transformer based architecture, which instead uses a feed-forward approach
to predict path components in a non-autoregressive manner. This method qualitatively showed
improvement on the task of SVG generation and interpolation compared to the previous methods.
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2.4 Conclusion

Typographic analysis is not an area that has yet received extensive attention. While there have
been some attempts at typographic similarity on raster images, they have been done using
conditions on fonts and characters. Therefore, while these methods work well in tasks where all
font metadata is known, they fail to generalize well to other situations.

Similarly, for deep learning on SVG images, DeepSVG comes out as the best solution among a
limited number of attempts in the area. Moreover, all found methods focus on the task of icon
generation and not on typographic analysis. This is what we achieve here, leveraging the fact that
SVG-based deep-learning methods can be particularly interesting in this field considering that
they inherently encode the geometry of the font, and hence could be a good source to differentiate
specific typographic features.

III METHODOLOGY

We seek to answer the following questions:
• Given a dataset of images of characters of different serifs types (sans-serif, triangular,

linear, and slab), can a model be built to accurately predict the serif type?
• Given a dataset of images of different fonts without font labels, can a latent representation

be built that learns to cluster together characters of similar features?

3.1 Classifying Serif Type

While serifs are quite a distinctive feature, they are small compared to the overall font image.
The serif may also appear in different positions depending on the character under consideration.
Hence, it is unclear whether the problem is better formulated as an image classification scenario
or a fine-grained classification scenario. We therefore decided to evaluate both kinds of models
on this task. To this end, we trained the EfficientNet-B2 and the Vision Transformer Base model
(ViT B) with 12 transformer layers. Also, two variants of the ViT B were trained as defined in
the ViT article by Dosovitskiy et al. [2020], with patch sizes of 16× 16 (ViT B/16) and 32× 32
(ViT B/32), respectively. The method and the model used, as well as the obtained weights for
this task, are available as supplementary material.

To test the accuracy of the models, we built a dataset with ground-truth font type and serif
category. There are several typologies of serifs, and their distinction is not always obvious
and can be linked to an interpretation of their drawing. In our context, we focus on their
perceived shape and have grouped the different types of serifs into three different categories (see
Figure 2): triangular (including oldstyle, transitional, wedge, etc.), lineal (including hairline,
didone, modern, etc.) and slab (quadrangular). A variant of a typeface that does incorporate
serifs is called a "serif font", while one which doesn’t is called "sans", or "sans serifs". Training
and validation datasets were built by first selecting a range of fonts from the Google font database
(including variations) for the four categories (sans-serif, triangular, linear, and slab). This was
done in collaboration with a type designer. Using this approach, we generated a comprehensive
dataset comprising 126 666 font samples derived from 2 043 fonts, including various font
variants. the dataset encompasses upper- and lower-case versions of the Latin alphabet (Aa - Zz)
as well as digits (0 - 9). The created database is available as supplementary material. The results
were evaluated using accuracy measures across the three sets, along with precision, recall, and
F1-score on the test set. To provide context to the results, we also trained the same models to
perform font classification and used the same accuracy measures.
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3.2 Typographic Similarity

Typographic similarity aims to group together characters sharing the same kind of typographic
features (belonging to the same font family, having the same serif type, etc.), regardless of
the structure of the character itself. This is a challenging task because any model trained in
an unsupervised manner (like a VAE) would tend to “memorize” the more obvious character
structure and group those together rather than learn the more subtle underlying features unique
to each font family. A workaround to this is to use conditions on the character, font family, and
font variations, as proposed by Srivatsan et al. [2019].

This approach enables the model to learn some specific features like the serif. However, this
method poses a challenge, the necessary amount of font labeled data required (>10K fonts). Such
a large amount of font-labeled data is not available. Moreover, there is a growing and exponential
number of fonts that do not allow for an up-to-date and open-source database. Therefore, the aim
here was to learn a useful latent representation using either no labels or only character labels.

The existing methods employing VAEs to build a latent representation of fonts use raster images
with various label conditions. However, no existing work in the literature achieves this using an
SVG representation of the fonts. We therefore propose to use a VAE with and without character
labels to build a latent representation inspired by the DeepSVG Hierarchical Generative Network
presented by Carlier et al. [2020] and discussed in section II.

We used the same training dataset for this task as for the serif classification one but in the format
of SVG, and trained two models, one knowing the character label and one without knowing
it. We also trained a convolutional variational autoencoder (CNN-VAE) on raster images to
provide a comparison (Nellas et al. [2021]). The Davies-Bouldin (Davies and Bouldin [1979])
index is utilized to evaluate all the models. To conduct this evaluation, we employ the k-means
clustering technique on the embeddings generated from the middle layer’s latent dimension in
the models. The determination of the optimal number of clusters was accomplished through the
elbow method (Thorndike [1953]). Specifically, during the serif clustering process, we obtain a
minimum value of 4, which aligns with the number of classes present. Similarly, when clustering
for fonts, we achieve a minimum of 28 clusters, corresponding to the number of fonts in the
testing set.

IV RESULTS

4.1 Classifying Font and Serif Type

The accuracy of the serif and the font classification models are calculated on the training,
validation, and the font-independent test set described in section III. The results are shown in
Table 1 and in Table 2.

With respect to the serif task, the general image classification model (EfficientNet-B2) performs
best on the training sets (accuracy of 0.93). However, it shows a significant accuracy degradation
on the font-independent test (0.79). In contrast, the fine-grained image classification model,
TransFG, performs comparatively worse on the training sets but generalizes very well on the
test set (0.91 and 0.89, respectively, for the VIT B/32 backend). The model with the ViT B/32
backend performs much better than the ViT B/16 one, with the larger patch size improving
accuracy across all three dataset splits. For further analysis, detailed results are calculated on the
font-independent test set, including metrics for precision, recall, which are then used to calculate
the F1-score (see Table 1b). We also display examples on the test set in Figure 3. We showcase
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Model + Backend
Accuracies

Train Test

TransFG ViT B/16 Backend 0.88 0.84
TransFG ViT B/32 Backend 0.91 0.89

EfficientNet-B2 0.93 0.79

(a) Training and test results for serif classification

Model + Backend
Results on Test Set

Precision Recall F1-Score

TransFG ViT B/16 Backend 0.92 0.84 0.88
TransFG ViT B/32 Backend 0.93 0.89 0.91

EfficientNet-B2 0.84 0.79 0.78

(b) Precision, recall and F1-Score on the serif classification test set

Table 1: Results for the serif classification task on the training and font-independent test datasets.

the outcomes for letters with obvious serifs (such as “u” and “v”), as well as for letters that
present challenges in observing the serif (like “t”) or are very difficult (such as “o”).

Upon examining the results of the font classification task (Table 2), EfficientNet-B2 model
performs better than both of the TransFG models (higher accuracies and better results on the test
set).

4.2 Typographic Similarity

The David-Bouldin index for SVG-based and raster based models with and without conditioning
on the character labels are provided in Table 3. In short, these indexes show that conditioning on
the character label helps in learning meaningful representations for font similarities. Furthermore,
we observe better clustering performances for the SVG-based model compared to the raster-based
one.

V DISCUSSION AND CONCLUSION

5.1 Serif Classification

For the serif classification, Table 1, the fine-grained image classification model, TransFG, gave
accurate results, reaching a font-independent test accuracy of 89.4% and an F1-score of 0.91,
using the ViT B/32 backend. While its counterpart with the ViT B/16 backend was not as
accurate, it still generalized well on the test set, yielding an accuracy of 84.0% and an F1-score
of 0.88. By contrast, the general image classification model, EfficientNet-B2, got an accuracy
of 79.2% on the test set. This shows that this model tends to “memorize” the fonts rather than
picking up the more subtle underlying serif features. This is also confirmed by the results of the
font classification task. As a consequence, the classification of serif types is better modeled as a
fine-grained classification task than as a general image classification problem, given the subtle
nature of the serif features.

Examining the results in Figure 3 reveals that the majority of errors for the TransFG models
occur when dealing with fonts that have extremely subtle serifs or when encountering specific
instances of serif fonts where the serifs are absent, such as in the characters “t” and “o”. The type
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Model + Backend
Accuracies

Train Test

TransFG ViT B/16 Backend 0.91 0.87
TransFG ViT B/32 Backend 0.93 0.90

EfficientNet-B2 0.96 0.91

(a) Training and test results for font classification

Model + Backend
Results on Test Set

Precision Recall F1-Score

TransFG ViT B/16 Backend 0.83 0.87 0.85
TransFG ViT B/32 Backend 0.86 0.90 0.88

EfficientNet-B2 0.89 0.91 0.90

(b) Precision, recall and F1-Score on the font classification test set

Table 2: Results for the font classification task on the training and test datasets.

of contrast and the angle of the axis used when drawing a character can provide clues about the
type of serif used in a font, even if the serif itself is not visible in a specific letter (e.g. “o”). For
instance, when a character has a visible contrast and a tilted axis, it may correspond to a triangular
serif font. Conversely, a character with high contrast and a straight axis tends to be associated
with linear serif fonts. On the other hand, slab-serif fonts usually lack contrast and can be seen as
grotesk sans-serif fonts with added serifs (e.g. Helvetica). These variations in how typographers
draw letters have a historical background. Before the advent of digital fonts, letters were crafted
using tools like reeds and quills, and the form of these instruments impacted the structure of
the letterforms. This impact is still apparent in digital typefaces, albeit in a modified manner.

Figure 3: Predicted serif on the serif classification test set. Bold corresponds to correct predictions.
Compared to TransFG (TFG), EfficientNet-B2 (EffNet) fails to classify serifs in several visually-obvious
cases.
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Model Font Clustering Serif Clustering

CNN-VAE (Unconditioned) 0.3779 0.4460
CNN-VAE (Conditioned) 0.2932 0.4047

DeepSVG (Unconditioned) 0.3233 0.4105
DeepSVG (Conditioned) 0.2518 0.3338

Table 3: The Davies-Bouldin index was computed on the results of the K-means clustering process for
both the SVG-based DeepSVG model and the raster-based CNN-VAE model in the font and serif tasks.
Results are presented for both Unconditioned and Conditioned (on character labels) training. Note that
the VAE latent dimension is set to z = 64 in all cases. In addition, it should be noted that a lower score
indicates better clustering.

Classical digital fonts often feature triangular serifs, reminiscent of pen-and-ink writing (e.g.,
the Garalde font family). On the other hand, modern fonts are often characterized by simpler
geometrical shapes. When looking at Figure 3, the triangular fonts Playfair Display and PT
Serif, are both contrasted and with a tilted axis. However, the shape of the letter “t” for Playfair
Display is very close to what one finds in a Didone linear serif, hence the possible classification
error given by EfficientNet-B2 and TransFG ViT B/16. Similarly, the almost straight axis of
the letter “o” for Playfair Display can be seen as a typical feature of a linear serif making it
difficult for the classification task even for an expert. When looking at the misclassified linear
serif for Libre Bodoni, it is difficult to understand why EfficientNet-B2 predicted a triangular
serif instead of a linear serif for the letter “u” as all linear font characteristics are met. The
same goes for the letter “o”. However, the beak of the letter “t” (top left of the letter) can be
interpreted as a triangular serif explaining the confusion of the EfficientNet-B2 and TransFG
ViT B/16. Finally, it is hard to explain why EfficientNet-B2 misclassifies the letter “t” for Antic
Slab and Montagu Slab as Slab serif criteria are met. Still the contrast of letter “o” for Montagu
Slab can explain the wrong predictions of all the models. The visual analysis of the results
confirms that the classification of serif types is better modeled as a fine-grained classification task
than as a general image classification problem. However, as modern fonts become increasingly
hybridized, it is becoming more difficult to make clear classifications. In order to gain a deeper
understanding of the fine-grained classification model’s decision-making process, one could
employ back-propagation strategies to determine the most significant part of the letter that
influences the classification outcome. It will also be interesting to compare the classification
errors made by the models with the predictions of experts in the field.

One important point to note is that the TransFG model is significantly more expensive to train. On
a single Titan RTX GPU with 24GB of CUDA Memory, the EfficientNet-B2 model took 4 hours
to train for 30 epochs. By contrast, the TransFG model took approximately 13 hours to train for
the same number of epochs. This is primarily because of the Vision Transformer backbone used
in the TransFG model (for which see Dosovitskiy et al. [2020]), which is computationally more
expensive than the EfficientNet backbone.

Regarding the font classification task, all the models performed equally better (Table 2) than
the serif task with slightly better results for the EfficientNet-B2 model. According to this, font
recognition is better modeled as a general image classification problem and serif recognition is a
more difficult task.
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5.2 Font Similarities

According to the Davies-Bouldin index results, both the unconditioned and conditioned SVG-
based models demonstrated better performance compared to the raster-based image model. The
decision to employ the CNN-VAE model was driven by the desire to establish a fair comparison
with the DeepSVG model, as they share similar architectural characteristics. Nevertheless,
it is likely that more recent models, such as those proposed by Radford et al. [2021], Caron
et al. [2021], and He et al. [2022], would have exhibited superior performance. Thus, we
propose considering these models as the next iteration for both raster-based and SVG-based
tasks. However, it should be noted that the implementation of the latter will require modifications
to ensure compatibility with the vectorial format. Considering DeepSVG, future work in this
direction could focus on improving the design of the autoencoder to make it more suitable for
font SVGs. In particular, the autoencoder used in this work exploits the hierarchical nature of an
SVG, which contains multiple paths, and multiple points in each path. However, they fail in cases
where the entire font SVG is formed of a single path, which is the case with some characters.
This could be addressed by designing a monolithic architecture that does not explicitly focus on
the hierarchy.

5.3 Conclusions

This paper has explored the application of various machine learning algorithms for classifying
serif fonts and matching fonts based on their feature similarities. Our experiments have revealed
that fine-grained image classification yields the most accurate results for serif classification,
although classification may fail in cases where serif shape is difficult to distinguish. In addition,
we have found that character labels greatly enhance similarity-matching performance. While
model weights can be improved, we believe that the value of such algorithms lies in their ability
to capture variations and similarities.
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